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ABSTRACT

Let Q be the set of positive integers that are omitted values of the form f =
Zi_ | a;x; where the g; are fixed positive integers with g.c.d. 1and the x; are
variable nonnegative integers.

Set w = [Q}and k=max Q + 1, Using an expression of Roberts [4] for x
when the g; form an arithmetic progression, we determine w in this case.

1. Introduction

Let a,, a,,--+,a, be positive integers with g.c.d. 1. As x;,x,, -, X, run in-
dependently over the nonnegative integers, the values of the linear form
1) f=axy +ayx; + - + apx,
run over a set of nonnegative integers, As pointed out by Nijenhuis and Wilf [3],
this set of assumed values, together with the operation of addition, forms a
semigroup.

Schur (see Brauer [2]), showed that there exists a positive integer m, such that
all m = m,, are assumed by f.

Let x(f), the conductor of f, be the least positive integer m, for which f assumes
all integers = my,.

Let Q = Q(f) be the set of positive integers that are omitted values of f, and
let o(f) = |Q|. Clearly x(f) = maxQ + 1.

It has been known for a long time that if n = 2, then

@ K(f) = (a;— D(a;— 1)

and a classical result of Sylvester [5] shows that
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3) o(f) = ¥a, — 1)(a, — 1) = Ix(f).
Simple proofs of (2) and (3) are presented in Nijenhuis and Wilf [3].
It is the purpose of this paper to evaluate w(f) when f is the form

“ axo + (@ + d)xy + -+ + (a + sd)x,.

Denote this form by ¢. When we want to emphasise the s-dependence of ¢, we
shall use the notation ¢,.

2. Preliminary results
We require some lemmas which we state without proof.

LemmAa 1 (Roberts [4]). The only numbers assumed by the form ¢ with
Xi_oX; = marema, ma+d,--,ma+ msd.

Lemma 2. If (a,d) =1, then

d—1 ka
® T[] = 4a-na-n

Here [x] denotes the greatest integer < x.

Lemma 3 (Roberts [4], Bateman [1]).

6) K@) = (["s_z] +1)a+(a—1)(d-—1).

Lemma 4 (Nijenhuis and Wilf [3]).
For the general form (1),

Q) o(f) z 2x(f).

3. Main theorem

Let O = O(¢) be the set of integers < x(¢) which are assumed by ¢. Let

a(¢) = |Q|.
Clearly
® o(9) + B(9) = ().
THEOREM.
a—2
©) o) =1 (|22 + )@+ + 3@~ v@-1

where t is the smallest nonnegative integer for which
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(10) a — 2 = (mods).

Proor. If a =1, the result is trivial. Assume a > 1. By Lemma 1, we can
classify the integers assumed by ¢ by considering in turn all possible values of

2 =o%;. We obtain the following sets of assumed values, with G, containing all
those obtained with X;_,x; = n:

G, = {0}
G, ={a,a+4d,-,a+ sd}

G, = {na,na + d,---,na + nsd}.

Let

11 v, = | G,|; clearly v, = ns + 1.
We have

(12) a(¢) = Eo |G, N Q]

where the upper terminal « is such that |G¢+1 N ﬁ] =0,
Provided the largest term in G, is small enough, G; = Q.

Let N =max{n: G, = Q}. Thus for alli £ N, G, c Q.

Let
d N
@) =X |G,n8|= I .
i=o0 i=0
Set
(14) g=x(¢)_1’m=a+5dandA= l:(a:Z)].

It follows from the definition of N that N = [g/m]. We show that [g/m] = 4.

We have:

A<(a—1)§[<a—1)+(s—1)
s s K

| =a+1

SO
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sdd <(a—1d Ssd(A+1)<a+sdA+1).
Adding Aa, we obtain
(a+sd)A<Aa+(a—Dd<(a+sd)y(4+1)
1e.
mAd <g<m(4+1).
So

A< g—<A+1,whence [i] =A4. Thus N = A.
m m

Equation (13) then gives @; = 2/, (is + 1) = (4 + 1)(4s + 2).
Since As + 2 = 2 (mods), we have

(azz)]s+2=a—t.

As+2 = [
Thus

(15) 51=§([":2] +1)(a—t).

The remaining clements of Q are those in G; N Q with i > N.
Let

16) o,= X |GNnQl= I .
k=N+1 k=N+1

Clearly

(17 (P) = @y + @,

Now l Gy+:N Q| # 0 for a positive integer i if and only if there is a nonnegative
integer k; such that:

(N +i)a+kd<g<(N+ia+(k + d.

Then
ki<g_—(‘%ﬂ<ki+l,andhence
_[e-(N+ia] [9-(A+Da] [ _ _ia
ki—[ yi ]—[ ] =|la—-1 rik

Clearly
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(18) U;v+i=ki+1 = [a_i%].
Now
da
UNgad = [a'——d-—] =0

So

d—-1 . d-1 d-1
19 @,= X [a—;i] = [2—(d—i)]= X [ZL] =¥a-1@d-1)

i=1 i=1 k=1
by Lemma 2.
Thus

a—2

20 o(¢) = @, +62=§([ ] + 1) (a-0+4a-1D@d-1).

From (8), we may deduce that:

a—2
s

w(¢)=%([ ]+1)(a+t)+%(a—1)(d—1)

which is the result required.

REMARK. It is interesting to note that @, is independent of d, whereas w, is
independent of s.
There are three corollaries.

COROLLARY 1.
w(¢) = 3x(P) if and only if a = 2(mods).

COROLLARY 2. In the case s=1, the congruence a=2 (mods) holds trivially;
thus in this case Corollary 1 gives

w($y) = $x(¢1)

which is the result of Sylvester [5].

COROLLARY 3. For given a and d we minimise w(¢,) by taking s =a—1.

In this case,

21) 0(,-1) = Ha—1)(d +1).

Proor. The sequence {w(¢,)} is nonincreasing with s. For all s=a — 1, we
have w(g,) = Ha + )+ Ha - 1D{d-1).
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As t = a — 2 in this case, we have a(¢,-,) =¥ a — 1)(d + 1).
For all s = a — 1 we also have w(¢,) = Ha — D(d + 1).
Now w(d,_,)=3(@—1)(d+ 1)+ 1> w(P,-,) as required.
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