ON LINEAR FORMS WHOSE COEFFICIENTS ARE IN ARITHMETIC PROGRESSION

BY

DOUGLAS D. GRANT

ABSTRACT

Let Ω be the set of positive integers that are omitted values of the form $f =$ $\Sigma_{i=1}^{n} a_i x_i$ where the a_i are fixed positive integers with g. c. d. 1 and the x_i are variable nonnegative integers.

Set $\omega = |\Omega|$ and $\kappa = \max \Omega + 1$. Using an expression of Roberts [4] for κ when the a_i form an arithmetic progression, we determine ω in this case.

1. Introduction

Let a_1, a_2, \dots, a_n be positive integers with g.c.d. 1. As x_1, x_2, \dots, x_n run independently over the nonnegative integers, the values of the linear form

(1)
$$
f = a_1 x_1 + a_2 x_2 + \dots + a_n x_n
$$

run over a set of nonnegative integers. As pointed out by Nijenhuis and Wilf $[3]$, this set of assumed values, together with the operation of addition, forms a semigroup.

Schur (see Brauer [2]), showed that there exists a positive integer m_0 such that all $m \geq m_0$ are assumed by f.

Let $\kappa(f)$, the *conductor* of f, be the least positive integer m_0 for which f assumes all integers $\geq m_0$.

Let $\Omega = \Omega(f)$ be the set of positive integers that are omitted values of f, and let $\omega(f) = |\Omega|$. Clearly $\kappa(f) = \max \Omega + 1$.

It has been known for a long time that if $n = 2$, then

(2)
$$
\kappa(f) = (a_1 - 1)(a_2 - 1)
$$

and a classical result of Sylvester [5] shows that

Received June 29, 1972 and in revised form March 20, 1973

Vol. 15, 1973 ON LINEAR FORMS 205

(3)
$$
\omega(f) = \frac{1}{2}(a_1 - 1)(a_2 - 1) = \frac{1}{2}\kappa(f).
$$

Simple proofs of (2) and (3) are presented in Nijenhuis and Wilf [3].

It is the purpose of this paper to evaluate $\omega(f)$ when f is the form

(4)
$$
ax_0 + (a+d)x_1 + \cdots + (a+sd)x_s.
$$

Denote this form by ϕ . When we want to emphasise the s-dependence of ϕ , we shall use the notation $\phi_{\rm s}$.

2. Preliminary results

We require some lemmas which we state without proof.

LEMMA 1 (Roberts $[4]$). The only numbers assumed by the form ϕ with $\sum_{i=0}^{s} x_i = m$ are ma, ma + d, ..., ma + msd.

LEMMA 2. *If* $(a, d) = 1$, then

(5)
$$
\sum_{k=1}^{d-1} \left[\frac{ka}{d} \right] = \frac{1}{2}(a-1)(d-1).
$$

Here [x] denotes the greatest integer $\leq x$.

LEMMA 3 (Roberts [4], Bateman [1]).

(6)
$$
\kappa(\phi) = \left(\left[\frac{a-2}{s}\right]+1\right)a + (a-1)(d-1).
$$

LEMMA 4 (Nijenhuis and Wilf [3]).

For the general form (1),

$$
\omega(f) \geq \frac{1}{2}\kappa(f).
$$

3. Main theorem

Let $\overline{\Omega} = \overline{\Omega}(\phi)$ be the set of integers $\lt \kappa(\phi)$ which are assumed by ϕ . Let $\overline{\omega}(\phi) = |\overline{\Omega}|.$

Clearly

(8)
$$
\omega(\phi) + \overline{\omega}(\phi) = \kappa(\phi).
$$

THEOREM.

(9)
$$
\omega(\phi) = \frac{1}{2} \left(\left[\frac{a-2}{s} \right] + 1 \right) (a+t) + \frac{1}{2} (a-1)(d-1)
$$

where t is the smallest nonnegative integer for which

(10) $a-2 \equiv t \pmod{s}$.

PROOF. If $a = 1$, the result is trivial. Assume $a > 1$. By Lemma 1, we can classify the integers assumed by ϕ by considering in turn all possible values of $\Sigma_{i=0}^{s}$. We obtain the following sets of assumed values, with G_n containing all those obtained with $\Sigma_{i=0}^{s} x_i = n$:

$$
G_0 = \{0\}
$$

\n
$$
G_1 = \{a, a+d, \cdots, a+sd\}
$$

\n
$$
\vdots
$$

\n
$$
G_n = \{na, na+d, \cdots, na+nsd\}.
$$

Let

(11)
$$
v_n = |G_n|; \text{ clearly } v_n = ns + 1.
$$

We have

(12)
$$
\overline{\omega}(\phi) = \sum_{i=0}^{\alpha} |G_i \cap \overline{\Omega}|
$$

where the upper terminal α is such that $|G_{\alpha+1} \cap \overline{\Omega}| = 0$.

Provided the largest term in G_i is small enough, $G_i \subset \overline{\Omega}$.

Let $N = \max\{n: G_n \subset \overline{\Omega}\}.$ Thus for all $i \leq N$, $G_i \subset \overline{\Omega}$. Let

(13)
$$
\overline{\omega}_1 = \sum_{i=0}^N |G_i \cap \overline{\Omega}| = \sum_{i=0}^N v_i.
$$

Set

(14)
$$
g = \kappa(\phi) - 1, \ m = a + sd \text{ and } A = \left[\frac{(a-2)}{s} \right].
$$

It follows from the definition of N that $N = [g/m]$. We show that $[g/m] = A$. We have:

$$
A < \frac{(a-1)}{s} \leqq \left[\frac{(a-1)}{s} + \frac{(s-1)}{s} \right] = A + 1
$$

SO

 $s dA < (a-1)d \leq sd(A + 1) < a + sd(A + 1).$

Adding *Aa,* we obtain

$$
(a + sd)A < Aa + (a - 1)d < (a + sd)(A + 1)
$$

i.e.

$$
mA < g < m(A+1).
$$

So

$$
A < \frac{g}{m} < A + 1 \text{, whence } \left[\frac{g}{m} \right] = A. \text{ Thus } N = A.
$$

Equation (13) then gives $\overline{\omega}_1 = \sum_{i=0}^{A} (is + 1) = \frac{1}{2}(A + 1)(As + 2)$.

Since $As + 2 \equiv 2 \pmod{s}$, we have

$$
As + 2 = \left[\frac{(a-2)}{s}\right]s + 2 = a - t.
$$

Thus

(15)
$$
\overline{\omega}_1 = \frac{1}{2} \left(\left[\frac{a-2}{s} \right] + 1 \right) (a-t).
$$

The remaining elements of $\overline{\Omega}$ are those in $G_i \cap \overline{\Omega}$ with $i > N$.

Let

(16)
$$
\overline{\omega}_2 = \sum_{k=N+1}^{\alpha} |G_k \cap \overline{\Omega}| = \sum_{k=N+1}^{\alpha} v'_k.
$$

Clearly

$$
\overline{\omega}(\phi) = \overline{\omega}_1 + \overline{\omega}_2.
$$

Now $|G_{N+i} \cap \overline{\Omega}| \neq 0$ for a positive integer *i* if and only if there is a nonnegative integer k_i such that:

$$
(N + i)a + k_i d < g < (N + i)a + (k_i + 1)d.
$$

Then

$$
k_i < \frac{g - (N + i)a}{d} < k_i + 1, \text{ and hence}
$$
\n
$$
k_i = \left[\frac{g - (N + i)a}{d} \right] = \left[\frac{g - (A + i)a}{d} \right] = \left[a - 1 - \frac{ia}{d} \right].
$$

Clearly

D. D. GRANT

Israel J, Math.,

(18)
$$
v'_{N+i} = k_i + 1 = \left[a - \frac{ia}{d} \right].
$$

Now

$$
v'_{N+d} = \left[a - \frac{da}{d} \right] = 0.
$$

So

$$
(19) \ \overline{\omega}_2 = \sum_{i=1}^{d-1} \left[a - \frac{ia}{d} \right] = \sum_{i=1}^{d-1} \left[\frac{a}{d} (d-i) \right] = \sum_{k=1}^{d-1} \left[\frac{ka}{d} \right] = \frac{1}{2}(a-1)(d-1)
$$

by Lemma 2.

Thus

(20)
$$
\overline{\omega}(\phi) = \overline{\omega}_1 + \overline{\omega}_2 = \frac{1}{2} \left(\left[\frac{a-2}{s} \right] + 1 \right) (a-t) + \frac{1}{2} (a-1)(d-1).
$$

From (8), we may deduce that:

$$
\omega(\phi) = \frac{1}{2} \left(\left[\frac{a-2}{s} \right] + 1 \right) (a + t) + \frac{1}{2} (a - 1) (d - 1)
$$

which is the result required.

REMARK. It is interesting to note that $\bar{\omega}_1$ is independent of d, whereas ω_2 is independent of s.

There are three corollaries.

COROLLARY 1.

 $\omega(\phi) = \frac{1}{2}\kappa(\phi)$ if and only if $a \equiv 2 \pmod{s}$.

COROLLARY 2. *In the case* $s=1$ *, the congruence* $a \equiv 2 \pmod{s}$ *holds trivially; thus in this case Corollary 1 9ires*

$$
\omega(\phi_1) = \frac{1}{2}\kappa(\phi_1)
$$

which is the result of Sylvester [5].

COROLLARY 3. For given a and d we minimise $\omega(\phi_s)$ by taking $s = a-1$. *In this case,*

(21)
$$
\omega(\phi_{a-1}) = \frac{1}{2}(a-1)(d+1).
$$

PROOF. The sequence $\{\omega(\phi_s)\}\$ is nonincreasing with s. For all $s \ge a - 1$, we have $\omega(\phi_s) = \frac{1}{2}(a + t) + \frac{1}{2}(a - 1)(d - 1).$

2O8

As $t = a - 2$ in this case, we have $\omega(\phi_{a-1}) = \frac{1}{2}(a - 1)(d + 1)$. For all $s \ge a - 1$ we also have $\omega(\phi_s) = \frac{1}{2}(a - 1)(d + 1)$.

Now $\omega(\phi_{a-2}) = \frac{1}{2}(a-1)(d+1) + 1 > \omega(\phi_{a-1})$ as required.

ACKNOWLEDGEMENT

I am deeply indebted to the referee for his valuable assistance in preparing this paper. In particular, the format of the proof of the main theorem is entirely due to him.

REFERENCES

1. P. T. Bateman, *Remark on a recent note on linear forms,* Amer. Math. Monthly 65 (1958), 517-518.

2. A. T. Brauer, *On aproblem of partitions,* Amer. J. Math. 64 (1942), 219-312.

3. A. Nijenhuis and H. Wilf, *Representations of integers by linear forms in non-negative integers,* J. Number Theory 4 (1972), 98-106.

4. J. B. Roberts, *A note on linear forms,* Proc. Amer. Math. Soc. 7 (1956), 465-469.

5. J. J. Sylvester, *Mathematical questions, with their solutions,* Educational Times 41 (1884), 21.

UNIVERSITY OF MELBOURNE PARKVILLE, VICTORIA, AUSTRALIA